Contractions, Removals and Certifying
3-Connectivity in Linear Time

Technical Report B 10-04

Jens M. Schmidt
Institute of Computer Science
Freie Universität Berlin, Germany

Abstract
As existence result, it is well known that every 3-connected graph $G = (V, E)$ on more than 4 vertices admits a sequence of contractions and a sequence of removal operations to K_4 such that every intermediate graph in the sequences is 3-connected. We show that both sequences can be computed in linear time, improving the previous best known running time of $O(|V|^2)$ to $O(|V| + |E|)$. This settles also the open question of finding a certifying 3-connectivity test in linear time and extents to certify 3-edge-connectivity in linear time as well.

1 Construction Sequences

Let $G = (V, E)$ be a finite graph with $n := |V|$ vertices and $m := |E|$ edges. Let G be connected if there is a path between every two vertices and disconnected otherwise. For $k \geq 1$, a graph G is k-connected if $n > k$ and deleting every set of $k - 1$ vertices leaves a connected graph. A vertex (a pair of vertices) that leaves a disconnected graph upon deletion is called a cut vertex (a separation pair). Note that k-connectivity does neither depend on parallel edges nor on self-loops.

A graph has connectivity k if it is k-connected but not $k + 1$-connected. Let a path P from vertex v to vertex w in G be denoted by $v \rightarrow_G w$ and $s(P) = v$ and $t(P) = w$. For a vertex v in G, let $N(v) = \{w \mid vw \in E\}$ denote its set of neighbors and $deg(v)$ its degree. For a graph G, let $\delta(G)$ be the minimum degree of its vertices.

A subdivision of a graph G replaces each edge of G by a path of length at least one. Conversely, we want a notation to get back to the graph without subdivided edges. If $deg(v) = 2$, $|N(v)| = 2$ and $v \notin N(v)$, let $\text{smooth}_v(G)$ be the graph obtained from G by deleting v followed by adding an edge between its neighbors (we say v is smoothed). If one of the conditions is violated, we set $\text{smooth}_v(G) = G$. Let $\text{smooth}(G)$ be the graph obtained by smoothing every

\begin{footnote}
*This research was supported by the Deutsche Forschungsgemeinschaft within the research training group “Methods for Discrete Structures” (GRK 1408). Email: jens.schmidt@inf.fu-berlin.de.
\end{footnote}
For an edge \(e \in E \), let \(G \setminus e \) denote the graph obtained from \(G \) by deleting \(e \).

Contracting an edge \(e = xy \) in a graph deletes \(e \), identifies vertices \(x \) and \(y \) and replaces iteratively two parallel edges by one single edge as long as possible. This way the simpleness of graphs is preserved by contractions. An edge \(e \) is called **contractible** if contracting \(e \) results in a 3-connected graph. Let \(K_n \) be the complete graph on \(n \) vertices and \(K_n^m \) be the complete graph on \(n \) vertices with \(m \) edges between each pair of vertices. For a rooted tree \(T \) and \(x \in V(T) \), let \(T(x) \) be the maximal subtree of \(T \) rooted at \(x \).

For convenience, we assume the input graph \(G \) to be simple, although all results can be extended to multigraphs. The following operations are called **Barnette and Grünbaum operations** (BG-operations).

- add an edge \(xy \) (possibly a parallel edge)
- subdivide an edge \(ab \) by a vertex \(x \) and add the edge \(xy \) for a vertex \(y \not\in \{a, b\} \)
- subdivide two non-parallel edges by vertices \(x \) and \(y \), respectively, and add the edge \(xy \)

A sequence of BG-operations that starts with \(K_4 \) and ends with a graph \(G \) is called a **construction sequence** of \(G \). Let \(G_1, G_2, \ldots, G_5 \) with \(G_1 = K_4 \) and \(G_5 = G \) be the graphs obtained in a construction sequence of \(G \). As BG-operations preserve 3-connectivity and \(K_4 \) is 3-connected, every \(G_j \), \(4 \leq j \leq 5 \) is as well 3-connected. We can represent the construction sequence in a different, but equivalent way \([1, 4]\): Every \(G_j \) is identified with a \(G_j \)-subdivision \(S_j \) in \(G \), giving the sequence \(S_1, \ldots, S_5 \) of subgraphs in \(G \). In particular, \(S_4 \) is a \(K_4 \)-subdivision in \(G \). As with contractions, we want the inverse of a BG-operation. Let removing the edge \(e = xy \) of a graph be the operation of deleting \(e \) followed by smoothing \(x \) and \(y \). An edge \(e = xy \) in \(G \) is called **removable**, if removing \(e \) yields a 3-connected graph.

The vertices \(v \) in \(S_j \) with \(d_{G_j}(v) \geq 3 \) are called **real vertices**, because they correspond to vertices in \(G_j \). Let \(V_{\text{real}}(S_j) \) be the set of real vertices in \(S_j \). Note that the graphs \(G_j \) may contain parallel edges, although every graph \(S_j \) is simple, because \(G \) is simple. We define the **links** of each \(S_j \) to be the unique paths in \(S_j \) with only their end vertices being real. The links of \(S_j \) partition \(E(S_j) \), as \(S_j \) is simple, 2-connected and not a cycle and therefore two vertices of degree at least 3 must exist \([6, \text{Lemma 12.11}]\). Let two links be **parallel** if they share the same end vertices.

Definition 1. A **BG-path** for a subgraph \(S_j \subset G \) is a path \(P = x \to y \) with the following properties:

1. \(S_j \cap P = \{x, y\} \)
2. Every link of \(S_j \) that contains \(x \) and \(y \), contains them as end vertices.
3. If \(x \) and \(y \) are inner vertices of links \(L_x \) and \(L_y \) of \(S_j \), respectively, and \(|V_{\text{real}}(S_j)| \geq 4 \), then \(L_x \) and \(L_y \) are not parallel.

It is easy to see that every BG-path for a subdivision \(S_j \) corresponds to a BG-operation on \(G_j \) and vice versa. The choice of the \(K_4 \)-subdivision \(S_4 \) is not
At the expense of having additional parallel edges in intermediate graphs $G_j \subset G$, there exists a construction sequence to G from each prescribed K_4-subdivision in G.

Theorem 2. The following statements are equivalent:

1. A simple graph G is 3-connected
2. \exists sequence of BG-operations from K_4 to G (see [1, 6])
3. \exists sequence of BG-paths from each K_4-subdivision in G to G and $\delta(G) \geq 3$ (see [4])
4. \exists sequence of removals from G to K_4 on removable edges $e = xy$ with $|N(x)| \geq 3, |N(y)| \geq 3$ and $|N(x) \cup N(y)| \geq 5$ (see [4])
5. \exists sequence of contractions from G to K_4 on contractible edges $e = xy$ with $|N(x)| \geq 3$ and $|N(y)| \geq 3$ (see [5])

Sequences 2.2 and 2.3 can be transformed into each other with a simple linear time algorithm [4]. Moreover, having sequence 2.2 gives immediately sequence 2.4 in linear time by removing the edges that were added as BG-operations in reverse order. The following result shows that sequences based on Barnette and Grünbaums’ characterization are algorithmically at least as powerful as the well-known sequence of contractions and all other sequences of Theorem 2.

Lemma 3 ([4]). There is a simple algorithm that transforms a given sequence of type 2.2 or 2.3 to a sequence of type 2.4 and to a sequence of type 2.5 in linear time.

This allows us to focus only on computing a sequence of type 2.3. To construct such a sequence, we will use the following Lemma for the special case that H is a K_4-subdivision.

Lemma 4 ([4]). Let G be a 3-connected graph and $H \subset G$ with H being a subdivision of a 3-connected graph. Then there is a BG-path for H in G. Moreover, every link of H of length at least 2 contains an inner vertex on which a BG-path for H starts.

2 Chain Decomposition

Let G be the simple, 3-connected input graph. According to Lemma 4, it suffices to add iteratively BG-paths to a K_4-subdivision in G to get sequence 2.3. Note that we cannot make a wrong decision when choosing one BG-path in the construction sequence, since Lemma 4 can be applied on the new subdivision as well and therefore ensures a completion of the sequence. Instead of starting with a K_4-subdivision, we will w.l.o.g. start with a K_4^2-subdivision S_3 and demand that there is a BG-path for S_3 that results in a K_4-subdivision. We now construct S_j in G and then describe a decomposition of G into special paths that allow us to find the BG-paths for each $S_j, 3 \leq j \leq z$, efficiently.

An arbitrary Depth First Search (DFS) is performed on G, assigning a Depth First Index (DFI) to every vertex. Let T be the DFS-tree obtained, r be the
root of T and u be the vertex that is visited second in the DFS. Both, r and u, have exactly one child, as otherwise they would form a separation pair in G. For two vertices v and w in T, let v be a (proper) ancestor of w and w be a (proper) descendant of v if $v \in w \to T r$ (and $v \neq w$). A backedge is an oriented edge $vw \in E(G) \setminus E(T)$ from v to w with v being an ancestor of w in T (note that the orientation differs from standard notation). A backedge vw is entering a subtree T' of a tree if $v \notin V(T')$ but $w \in V(T')$.

We choose two backedges ra and rb and denote the least common ancestor of a and b in T with x. The paths $x \to T r$, $ra \cup a \to T x$ and $rb \cup b \to T x$ are the three subdivided edges of S_2 in G having real vertices r and x.

Dependent on T, we describe the decomposition of G into special paths $C := \{C_0, C_1, \ldots, C_{m-n+1}\}$, called chains, whose edge sets partition $E(G)$. Additionally, the decomposition yields a total order $< C$ with $C_0 < C_1 < \ldots < C_{m-n+1}$ that reflects the order in which the chains were computed. Let $low(P)$ for a path P in G be the vertex in P with maximal DFI value. We set $C_0 := x \to T r$, $C_1 := ra \cup a \to T x$ and $C_2 := rb \cup b \to T x$. The remaining chains are obtained by applying the following procedure subsequently for $i = 0, 1, \ldots, n-\alpha+1$: We iterate over all vertices $v \in V(C_i)$ from $t(C_i)$ to $low(C_i)$. For every backedge vw that is not already in a chain, we traverse the path $w \to T r$ until a vertex x is found that is contained in a chain. The traversed path including vw forms the new chain $C_j = v \to G x$, with j being the next free index.

Note that every chain $C_i \neq C_0$ contains exactly one backedge and that $s(C_i)$ is always a proper ancestor of $t(C_i)$. For an edge $e \in E(G)$, let $C(e)$ be the chain that contains e. The next two lemmas show that C partitions the edge set of G and admits a tree structure.

Lemma 5. The edge sets of the chains in C partition $E(G)$, hence $|C| = m - n + 2$. Let $e = e_1e_2$ be an edge in T and $f = f_1f_2$ be an edge in G with $e_2 = low(e)$, $f_2 = low(f)$ and e_2 being an ancestor of f_2 in T. Then $C(e) \leq C(f)$ holds.

Proof. Whenever a vertex v is processed in the chain decomposition, all its ancestors and their attached backedges have already been processed. At the same time, for every child w of v, the tree edge vw is already contained in a chain, since otherwise all backedges entering $T(w)$ have to start at v, implying that v is a cut vertex separating $T(w)$. Therefore, w will be processed later. This implies that every vertex and every edge in G will be processed by the decomposition. Since all chains are pairwise edge-disjoint, the edge sets of chains in C partition $E(G)$. Since every chain in $C \setminus \{C_0\}$ contains exactly one backedge, C contains $m - n + 2$ chains.

The same line of argument settles the second claim for the case when e_1 is an ancestor of $s(C(f))$, since then e is already contained in a chain at the time $s(C(f))$ is processed and $C(e) \leq C(f)$ holds. The only remaining case is when $s(C(f))$ is an ancestor of e_1 with $s(C(f)) \neq e_1$. If e is not part of a chain when $C(f)$ is found, e will be contained in $C(f)$, because e_2 is an ancestor of f_2, and $C(e) = C(f)$. Otherwise, e is part of a chain that was found before $C(f)$ and $C(e) < C(f)$ holds.

□

4
Definition 6. Let the **parent of a chain** $C_i \neq C_0$ be the chain that contains the edge from $t(C_i)$ to the parent of $t(C_i)$ in T.

Lemma 7. The parent relation defines a tree U with $V(U) = C$ and root C_0.

Proof. Let $D_0 \neq C_0$ be a chain in C and let D_1, \ldots, D_k be the sequence of chains containing the edges of $t(D_0) \rightarrow_T r$ in that order, omitting double occurrences. By definition of the parent relation, each D_i, $0 \leq i < k$, has the parent D_{i+1} and $D_k = C_0$ holds. It follows that U is connected. Moreover, for each parent C_i of a chain C_j holds $C_i < C_j$ with Lemma 5 and, thus, no cycle can occur in U. □

2.1 Classifying Chains

In order to find BG-paths efficiently, we extend the chain decomposition by assigning each chain in $C \setminus \{C_0\}$ immediately after it was found to one of five types: 1, $2a + b$ and $3a + b$. These types form a partition of $C \setminus \{C_0\}$ and are defined by Algorithm 1. Note that the classification for C_i is dependent on the type of the parent C_k of C_i. At the beginning, all chains are unmarked.

Algorithm 1 classify($C_i \in C \setminus \{C_0\}$, DFS-tree T)

1: $C_k := \text{parent}(C_i)$ \triangleright the parent of C_i in U: $C_k < C_i$
2: if $t(C_i) \rightarrow_T s(C_i)$ is contained in C_k then \triangleright type 1
3: assign C_i to type 1
4: else if $s(C_i) = s(C_k)$ then \triangleright type 2: $C_k \neq C_0$, $t(C_i)$ is inner vertex of C_k
5: if C_i is a backedge then
6: assign C_i to type 2a \triangleright type 2a
7: else
8: assign C_i to type 2b; mark C_i \triangleright type 2b
9: else \triangleright type 3: $s(C_i) \neq s(C_k)$, $C_k \neq C_0$, $t(C_i)$ is inner vertex of C_k
10: if C_k is not marked then
11: assign C_i to type 3a \triangleright type 3a
12: else \triangleright C_k is marked
13: assign C_i to type 3b; create a list $L_i = \{C_j\}$; $C_j := C_k$ \triangleright type 3b
14: while C_j is marked do \triangleright the chains in L_i form a caterpillar
15: unmark C_j; append C_j to L_i; $C_j := \text{parent}(C_j)$

Lemma 8. Computing a chain decomposition of a 3-connected graph and classifying each chain with Algorithm 1 takes running time $O(n + m)$.

Proof. The DFS tree T can be obtained in time $O(n + m)$. The subdivision S_3 can be found in time linearly dependent on $E(S_3)$ by taking two arbitrary backedges ra and rb with r being the root of T and finding the lowest common ancestor of a and b by traversing T upwards. The computation of each remaining chain C_i, $i \geq 2$, takes time linearly dependent on its length, too, which gives a running time of $O(n + m)$ for the chain decomposition.

In order to obtain a fast classification in Algorithm 1, we store the following information on each chain C_i: A pointer to its parent C_k (for $C_i \neq C_0$), pointers
to \(s(C_i)\) and \(t(C_i)\) and the information whether \(C_i\) is a backedge. In addition, for each inner vertex of \(C_i\) a pointer to \(C_i\) is stored. That allows us to check vertices on being contained as inner vertices or end vertices in arbitrary chains in \(O(1)\). If \(C_k = C_0\), we can check the condition on \(C_i\) being of type 1 in constant time by testing whether \(s(C_i)\) and \(t(C_i)\) are contained in \(C_0\). If \(C_k \neq C_0\), we check in constant time whether \(s(C_i)\) and \(t(C_i)\) are contained in \(C_k \setminus \{s(C_k)\}\). The condition for type 2 needs constant time as well. Every chain is marked at most once, therefore unmarked as most once in line 15 of Algorithm 1, which gives a total running time of \(O(n + m)\).

\[\square\]

2.2 Restrictions

Definition 9. Let a subdivision \(S_j \subseteq G\) be upwards-closed if for each vertex in \(S_j\) the edge to its parent is in \(E(S_j)\). Let \(S_j\) be modular if \(S_j\) is the union of chains.

In order to find BG-paths efficiently, we want to restrict every subdivision \(S_l\) to be upwards-closed and modular.

Lemma 10. Let \(S_l\) be upwards-closed and modular. Then a BG-path \(P\) for \(S_l\) is a chain if and only if \(S_l+1\) is upwards-closed and modular.

Proof. If \(P\) is a chain, \(t(P)\) is contained in \(S_l\) and \(S_l+1\) must be upwards-closed and modular due to the DFS structure. If \(P\) is not a chain, we assume to the contrary that \(S_l+1\) is upwards-closed and modular. Then \(P\) must be the union of \(t > 1\) chains; let \(C_i\) be the first chain in \(P\). Now \(P\) cannot start with \(t(C_i)\), since \(s(C_i)\) is in \(S_l\) and property 1.1 contradicts \(t > 1\). Thus, \(P\) starts with \(s(C_i)\), which contradicts \(t > 1\) as well, as \(S_l+1\) is upwards-closed and a second chain in \(P\) would include another backedge in \(P\) at a vertex that is already incident to two DFS tree edges.

Lemma 10 shows that this restriction implies every BG-path to be a chain. Unfortunately, configurations exist where no BG-path for a subdivision \(S_l\) is a chain (show an example here) and we have to weaken the restriction in order to ensure the existence of a construction sequence. Instead of forcing every subdivision to be upwards-closed and modular, we will only assume that the current subdivision \(S_l\) has that properties and then find \(t\) BG-paths that result in an upwards-closed subdivision when applied successively and whose union is the union of \(t\) distinct chains. This ensures \(S_{l+t}\) to be modular and implies \(z = |C| = m-n+2\). Since \(S_3\) is upwards-closed and modular, we now can assume that whenever we are searching for a new BG-path, the current subdivision \(S_l\) is upwards-closed, modular and consists of exactly \(l\) chains (and at least \(l\) links).

We impose the additional restriction \((R_2)\) (see Figure 1), which will prevent some BG-paths in the sequence from violating property 1.3. In total, we obey the following restrictions in a construction sequence:

\((R_1)\) For each subdivision \(S_l\), BG-paths are only added as

- single chains of type 1, 2a or 3a, respectively, with \(S_{l+1}\) being upwards-closed and modular or as
Figure 1: The effect of restriction \((R_2)\) on the dashed BG-path.

- set of \(t > 1\) successive BG-paths that construct an upwards-closed modular subdivision \(S_{t+t}\) differing from \(S_t\) in exactly \(t\) chains of types 2b and 3b.

\((R_2)\) For each subdivision \(S_t\), every link of \(S_t\) that contains only tree edges of \(T\) has no parallel link, except \(C_0\) in \(S_3\).

We will prove the existence of a construction sequence restricted by \((R_1)\) and \((R_2)\) in Section 3. Now it is shown that restriction \((R_2)\) implies property 1.3 on upwards-closed modular subdivisions.

Lemma 11. Let \(S_t\) be a subdivision constructed under \((R_1)\) and \((R_2)\) (in particular, \(S_t\) is upwards-closed and modular). Then each path \(P\) for \(S_t\) having properties 1.1 and 1.2 is a BG-path. If \(P\) is additionally a chain of type 2a or 3a, \((R_1)\) and \((R_2)\) are preserved.

Proof. For the first claim, assume to the contrary that \(P\) violates property 1.3. Then \(|V_{\text{real}}(S_t)| \geq 4\) must hold and \(S_t \neq S_3\) follows. Let \(R\) and \(Q\) be the parallel links of \(S_t\) that contain the end vertices of \(P\) as inner vertices, respectively. At least one of them, say \(R\), contains a backedge, since otherwise \(T\) would contain a cycle. Let \(C_i \neq C_0\) be the chain in \(S_t\) that contains \(R\). Since \(C_i\) contains exactly one backedge, \(s(C_i)\) is an end vertex of \(R\). If \(R \subset C_i\), \(Q\) must contain a backedge, as \(t(C_i)\) is an inner real vertex of \(t(R) \rightarrow_T s(R)\). In that case, all inner vertices of \(Q\) lie in a subtree of \(T\) that cannot be reached by \(P\) due to property 1.1 and \(S_t\) being upwards-closed. Thus, \(R = C_i\) and with the same argument \(Q = t(C_i) \rightarrow_T s(C_i)\) holds. With \((R_2)\), \(S_t\) must be \(S_3\) and \(Q = C_0\), which contradicts our assumption.

For the second claim, each chain \(C_i\) of type 2 or 3 has by definition an inner real vertex in \(t(C_i) \rightarrow_T s(C_i)\) and therefore preserves \((R_2)\). If \(C_i\) is of type 2a or 3a, \((R_1)\) is preserved as well, as \(S_{t+1}\) is upwards-closed and modular with Lemma 10. \(\square\)

We now show that the chains of type 3a help to find BG-paths efficiently.

Lemma 12. Let \(C_k\) be the parent of a chain \(C_i \neq C_0\).

- If \(C_i\) is not of type 1, \(C_k \neq C_0\) and \(t(C_i)\) is an inner vertex of \(C_k\).
• Let C_k but not C_i be contained in a subdivision S_l constructed under (R_1) and (R_2). If C_i is either of type 3a or of type 1 with an inner real vertex in $t(C_i) \rightarrow_T s(C_i)$, C_i is a BG-path for S_l preserving (R_1) and (R_2).

Proof. Assume to the contrary that C_i is not of type 1 and $C_k = C_0$. Because $t(C_i)$ is contained in C_0, $s(C_i)$ must be in C_0 as well. But then C_i would be of type 1, since $t(C_i) \rightarrow_T s(C_i) \subseteq C_0$. Therefore, if C_i is not of type 1, $C_k \neq C_0$ holds and C_k must start with a backedge. Then the definition of the parent relation implies that $t(C_i)$ is an inner vertex of C_k.

For the second claim, let C_i first be of type 3a. Since S_l is upwards-closed, modular and contains C_k, C_i satisfies the property 1.1 of BG-paths. In addition, $s(C_i) \neq s(C_k)$ holds by definition and with $C_k < C_i$, $s(C_i)$ must be an inner vertex of the path $t(C_k) \rightarrow_T s(C_k)$ (see Figure 2). Therefore, the only chains C_j that contain $s(C_i)$ and $t(C_i)$ are different from C_0 and fulfill $C_i \cap C_j = \{s(C_i), t(C_i)\} = \{s(C_j), t(C_j)\}$. This implies C_i having property 1.2. Using Lemma 11, C_i is a BG-path for S_l that preserves (R_1) and (R_2).

If C_i is of type 1, property 1.1 follows from the same argument as before. Additionally, the inner real vertex in $t(C_i) \rightarrow_T s(C_i)$ prevents any link containing $s(C_i)$ and $t(C_i)$ from having $s(C_i)$ or $t(C_i)$ as an inner vertex and therefore ensures property 1.2. Lemma 11 implies that C_i is a BG-path for S_l and C_i must preserve (R_1) and (R_2), the latter due to the inner real vertex in $t(C_i) \rightarrow_T s(C_i)$. □

2.3 Caterpillars

While chains of type 3a form BG-operations under the conditions of Lemma 12, chains of types 1 and 2 in general do not. For every chain C_i of type 3b, Algorithm 1 collects a list L_i that contains only C_i and chains of type 2b (see line 15). We call each list L_i a *caterpillar*. Caterpillars bundle the single chains of type 2b, which cannot immediately be added as BG-paths, and will offer a simple decomposition into successive BG-paths later.

Proposition 13. Every caterpillar L_i contains exactly one chain of type 3b, namely the chain C_i. All other chains in L_i are of type 2b.

Figure 2: A chain $C_i \not\subseteq S_l$ of type 3.
Lemma 14. $C \setminus \{C_{k}\}$ is partitioned into the chains of types 1, 2a, 3a and the chains being contained in caterpillars. Moreover, no chain is contained in two caterpillars.

Proof. With Proposition 13, it remains to show that every chain C_i of type 2b or 3b is contained in exactly one caterpillar. If C_i is of type 3b, C_i is part of the caterpillar L_i (see Algorithm 1, line 13) and will not be assigned to a second caterpillar afterwards, as it is not marked. Otherwise, C_i is of type 2b and was therefore marked. We show that, after all chains in C have been classified, C_i is not marked anymore. This forces C_i to be contained in exactly one caterpillar, as the only way to unmark chains is to assign them to a caterpillar (see Algorithm 1, line 15) and no chain is marked twice.

Let C_k be the parent of C_i. Because C_i is of type 2b, $s(C_i) = s(C_k)$ holds and C_i is not a backedge, implying that the last edge e of C_i is in T. Let x be the end vertex of e different from $t(C_i)$. Using Lemma 12, $C_k \neq C_0$ holds and $t(C_i)$ is an inner vertex of C_k. Then at least one backedge vw with $v \notin \{s(C_i), t(C_i)\}$ must enter $T(x)$, since otherwise $s(C_i)$ and $t(C_i)$ would be a separation pair of G. Let C_j be the minimal chain with respect to $<$ that contains such a backedge.

As $C_j > C_i$ holds due to Lemma 5, the vertex v is an inner vertex of $t(C_i) \to_T s(C_i)$, implying that C_j is not of type 2. In addition, C_j is not of type 1, since $t(C_j) \to_T v$ contains edges from C_i and C_k. At the time C_j is found in the chain decomposition, every chain that already ends at a vertex in $T(x)$ starts at $s(C_i)$ and is therefore of type 2a or 2b. Since chains that are backedges cannot have children, the parent of C_j is marked and C_j is of type 3b. Moreover, every chain corresponding to an inner vertex of the path $C_j \to_U C_i$ is marked. This concludes C_i to become unmarked due to line 15 of Algorithm 1.

\(\square \)

Definition 15. Let the parent of a caterpillar L_j be the parent of the chain in L_j that is minimal with respect to $<$. Let a caterpillar L_j with parent C_k be bad if $s(C_j)$ is a descendant of $t(C_k)$ and $s(C_k) \to_{C_k} s(C_j)$ contains no inner real vertex (see Figure 3(a)). Otherwise, L_j is called a good caterpillar (see Figure 3(b)).

We now show that, under some minor conditions, caterpillars can be decomposed into multiple BG-paths nicely.

Lemma 16. Let L_j be a caterpillar that contains t chains and has parent C_k. Let C_k but no chain in L_j be contained in a subdivision S_l that was constructed under (R_1) and (R_2). Then the chains in L_j can be efficiently decomposed into t successive BG-paths preserving (R_1) and creating subdivisions $S_{l+1}, S_{l+2}, \ldots, S_{l+t}$, each of which satisfies (R_2), if and only if L_j is good.

Proof. Let L_j be good and let y be the last vertex of the minimal chain in L_j, thus $y \in V(C_k)$. We assume at first that $s(C_j)$ is a proper ancestor of $t(C_k)$ (see Figure 3(b)). Then the path $P = C_j \cup (t(C_j) \to_T y)$ fulfills properties 1.1 and 1.2 and is a BG-path for S_l with Lemma 11. Adding P preserves S_l to be upwards-closed but not modular. The restriction (R_2) is also preserved, as $t(C_k)$ is real and, for $S_l = S_3$, C_k must be either C_1 or C_2, implying that $s(P)$ becomes
an inner real vertex of C_0. Successively, for each chain C_i of the $t - 1$ chains in $L_i \setminus \{C_j\}$, we now add $C_j \setminus P$, which is a BG-path yielding an upwards-closed subdivision for analogue reasons.

Now assume that $s(C_j)$ is a descendant of $t(C_h)$ (see Figure 3(a)). Then $s(C_j) \in V(C_h)$ and since L_j is good, there is a real vertex a strictly between $s(C_j)$ and $s(C_h)$ in C_h. We first show that $t(C_h) \rightarrow_T s(C_h)$ contains an inner real vertex as well. Assume the contrary. Then C_h must be of type 1 and has been added before, contradicting restriction (R_2) unless $S_i = S_{j3}$. But S_i must be different from S_{j3}, since a exists, and it follows that $t(C_h) \rightarrow_T s(C_h)$ contains an inner real vertex b. Let C_h be the parent of C_j. Then $(C_j \cup C_h) \setminus ((t(C_j) \rightarrow_T y) \setminus (t(C_j)))$ is a BG-path due to the real vertices a and b and we add it, although it neither preserves S_{i+1} to be upwards-closed nor modular. We next add $t(C_j) \rightarrow_T y$, which restores upwards-closedness. The resulting subdivisions S_{i+1} and S_{i+2} both satisfy (R_2), as b is real in S_{i+1} and S_{i+2} and y is real in S_{i+2}. We proceed with adding successively paths, namely for each chain C_i of the $t - 2$ remaining chains in $L_i \setminus \{C_j, C_h\}$ the path $C_i \setminus (t(C_j) \rightarrow_T y)$. With the same line of argument, these paths obtain upwards-closed subdivisions S_{i+3}, \ldots, S_{i+t}, each of which satisfies (R_2).

In both cases, S_{i+t} is modular, since L_j is a list of chains. Moreover, the t chosen BG-paths preserve (R_1), as the chains in L_j are of types $2b$ and $3b$ only, $t > 1$ holds and S_{i+t} is upwards-closed. All paths can be computed in time linearly dependent on the total number of edges in L_j.

For the only if part, let P_1 and P_2 be the first two BG-paths in a decomposition of the chains in L_j; these exist, since $t > 1$ holds in every caterpillar. Let L_j be bad, as otherwise the claim follows. Then $s(C_j) \in V(C_h)$. We show that L_j cannot be bad, as S_i contains a real vertex in C_h strictly between $s(C_j)$ and $s(C_h)$. Because of properties 1.1 and 1.2, $P_1 \cap S_i = \{s(C_h), s(C_j)\}$ must hold and P_1 is a link of S_{i+1} being parallel to $s(C_j) \rightarrow_{C_h} s(C_h)$. Since only the chain of type $3b$ in L_j starts at $s(C_j)$, both end vertices of P_2 must be different from $s(C_j)$. Then, due to properties 1.1 and 1.2, P_2 joins inner vertices of the parallel links P_1 and $s(C_j) \rightarrow_{C_h} s(C_h)$ in S_{i+1}, contradicting property 1.3, as

![Figure 3: Two kinds of caterpillars.](image-url)
3 Existence of the Restricted Construction Sequence

We show that there still exists a construction sequence under restrictions \((R_1)\) and \((R_2)\).

Definition 17. Let \(S_l\) be a subdivision of \(G\) constructed under \((R_1)\) and \((R_2)\). We define the equivalence relation \(\sim\) on \(E(G) \setminus E(S_l)\) with

- \(\forall e \in E(G) \setminus E(S_l): e \sim e\) and
- \(\forall e, f \in E(G) \setminus E(S_l): e \sim f\) if there is a path \(e \rightarrow_G f\) without an inner vertex in \(S_l\).

Let the equivalence classes of \(\sim\) be the segments of \(S_l\). Note that every segment consists of a disjoint union of chains. For a chain \(C_i\) that is not contained in \(S_l\), let the segment of \(C_i\) be the segment of \(S_l\) that contains \(C_i\).

Lemma 18. Let \(S_l\) be a subdivision constructed under \((R_1)\) and \((R_2)\) and let \(C_i\) be a chain of type 3 such that \(s(C_i) \in V(S_l)\), \(C_i \not\subseteq S_l\) and \(C_i\) is minimal among the chains of type 3 in its segment \(H\). Let \(D_1 > \ldots > D_k\) be all ancestors of \(C_i\) in \(H\) with \(D_1 = C_i\) and \(D_k\) being the minimal chain in \(H\). Then all chains \(D_1, \ldots, D_k\) can be successively added as BG-paths preserving \((R_1)\) and \((R_2)\) (possibly being part of caterpillars), unless one of the following exceptions holds:

1. \(C_i\) is of type 3a, \(k = 2\), \(D_k\) is of type 1, \(s(C_i)\) is an inner vertex of \(t(D_k) \rightarrow_T s(D_k)\) and there is no inner real vertex in \(t(D_k) \rightarrow_T s(D_k)\) (Figure 4(a)).
2. \(C_i\) is of type 3b, \(D_k\) is of type 2b and \(L_i = \{D_1, \ldots, D_k\}\) with \(L_i\) being bad (Figure 4(b)).
3. \(C_i\) is of type 3b, \(L_i = \{D_1, \ldots, D_{k-1}\}\), \(D_k\) is of type 1, \(s(C_i)\) is an inner vertex of \(t(D_k) \rightarrow_T s(D_k)\) and there is no inner real vertex in \(t(D_k) \rightarrow_T s(D_k)\) (Figure 4(c)).

Proof. Let \(D \in \{D_2, \ldots, D_k\}\). Then \(D\) is not of type 3 by assumption and not of type 2a, as chains of that type cannot have children. Assume that \(D\) is of type 2b and let \(L_j\) be the caterpillar containing \(D\) due to Lemma 14. If \(C_j \not\subseteq C_i\), \(C_j < C_i\) holds, as otherwise \(C_j\) would not be the chain of type 3b in \(L_j\). But then \(C_j\) contradicts the minimality of \(C_i\), since \(C_j\) is not contained in \(S_l\) and of type 3b. We conclude that every chain in \(\{D_2, \ldots, D_k\}\) of type 2b is contained in \(L_i\) and forces \(C_i\) to be of type 3b. This is used in the following case distinction.

Let \(C_i\) be of type 3a. If \(k = 1\), \(C_i\) is a BG-path for \(S_l\) with Lemma 12 and the claim follows. Otherwise, \(k > 1\) and all chains in \(\{D_2, \ldots, D_k\}\) are of type 1. Then \(s(D_2)\) is a proper ancestor of \(s(C_i)\), since \(D_2 < C_i\) and \(C_i\) is not of type 2. Moreover, \(s(C_i)\) is a proper ancestor of \(t(D_2)\), because otherwise
Figure 4: The three exceptions of Lemma 18. The black vertices in 18.1 and 18.3 can also be non-real.

\[H \cap S_1 = \{ s(D_2), t(D_2) \} \]

is a separation pair of \(G \) due to the minimality of \(C_i \). It follows that \(s(C_i) \) is an inner vertex of \(t(D_2) \rightarrow_T s(D_2) \). If \(k > 2 \), \(D_3 \) must contain \(t(D_2) \rightarrow_T s(D_2) \), because \(D_2 \) is of type 1 and a child of \(D_3 \). Therefore, the edge \(e \) joining \(s(C_i) \) with the parent of \(s(C_i) \) in \(T \) is contained in \(D_3 \). But since \(S_i \) is upwards-closed, \(e \) is also contained in \(S_i \), contradicting that \(D_3 \not\subseteq S_i \). Thus, \(k = 2 \). If \(t(D_2) \rightarrow_T s(D_2) \) contains an inner real vertex, \(D_2 \) and \(C_i \) can be subsequently added as BG-paths with Lemma 12, otherwise 18.1 is satisfied.

Let \(C_i \) be of type 3b. Then all chains in \(\{ D_2, \ldots, D_k \} \) that are of type 2b must be contained in \(L_i \). Since every caterpillar \(L_j \) contains the parent of the chain \(C_j \) and since \(S_j \) contains no chain in \(L_i \) due to \((R_1)\), \(k > 1 \) holds and \(D_2 \) is of type 2b with \(D_2 \in L_i \). Let \(D_t \) with \(1 < t \leq k \) be the minimal chain in \(L_i \). If \(t = k \) and \(L_i \) is good, all chains in \(L_i \) can be decomposed to BG-paths according to Lemma 16. If \(t = k \) and \(L_i \) is bad, 18.2 is satisfied. Only the case \(k > t \) remains. Then \(D_{t+1} \) is of type 1 and, using the same arguments as in the case for type 3a, \(s(C_i) \) is an inner vertex of \(t(D_k) \rightarrow_T s(D_k) \) and \(k = t + 1 \). If \(t(D_k) \rightarrow_T s(D_k) \) contains an inner real vertex, Lemmas 12 and 16 imply that \(D_k \) and \(L_i \) can be iteratively added as set of successive BG-paths, preserving \((R_1)\) and \((R_2)\). Otherwise, 18.3 is satisfied. \(\square \)

We extend Lemma 18 to non-minimal chains of type 3.

Lemma 19. Let the preconditions of Lemma 18 hold. If \(C_i \) is not contained in one of the exceptions 18.1-18.3 (as \(C_i \)), the chains of type 3 in \(H \) that start in \(S_i \) and their ancestors in \(H \) can be successively added as BG-paths, preserving \((R_1)\) and \((R_2)\).

Proof. Using Lemma 18, we add the chains \(C_i, D_2, \ldots, D_k \) in \(H \) as BG-paths. This partitions \(H \) into new segments; let \(H' \subseteq H \setminus \{ C_i, D_2, \ldots, D_k \} \) be such a
new segment. If H' does not contain chains of type 3 that start in S_l, the claim follows for such chains in H'. Otherwise, let C_j be the minimal chain of type 3 in H' that starts in S_l and let $C_j > D'_2 > \ldots > D'_k$ be its ancestors in H'. We show that C_j is not contained in one of the exceptions 18.1-18.3 and can therefore be added as BG-path with Lemma 18, along with its proper ancestors in H'. First, assume to the contrary that C_j is contained in exception 18.1 or 18.3 (see Figure 5(a)). Because D'_k is a proper descendant of D_k and D'_k is of type 1, $s(C_j) \in V(S_l)$ cannot be an inner vertex of $t(D'_k) \rightarrow_{T} s(D'_k)$, contradicting the assumption. Now assume to the contrary that C_j is contained in exception 18.2 (see Figure 5(b)). Then C_j is of type 3b and part of a bad caterpillar L_j, whose parent D is not contained in H'. Because L_j contains only chains in H', D must be a descendant of D_k and is therefore contained in $H \setminus H'$. Since L_j is bad, $s(C_j)$ is contained in $S_l \cap D$ and it follows with $s(C_j) \neq s(D)$ that D must end in S_l at the vertex $s(C_j)$. As D_k is the only chain in H that ends in S_l, $D = D_k$ must hold. But this contradicts L_j being bad, as D contains the inner real vertex $s(D_{k-1})$. Thus, C_j and its ancestors in H' can be added, partitioning H' into smaller segments. Iterating the same argument for these segments establishes the claim for all chains of type 3 in H that start in S_l. □

Each of the exceptions 18.1-18.3 in Lemma 18 contains a certain path without inner real vertices. We refer to this path in the following way.

Definition 20. Let a chain C_i that is of type 1 or 2a and has parent C_k be dependent on the path $s(C_i) \rightarrow_{C_k} t(C_i)$. Let every chain C_i of type 2b or 3b that is contained in a caterpillar L_i that parent C_k be dependent on the path $s(C_i) \rightarrow_{T} t(C_k) \cup t(C_k) \rightarrow_{C_k} s(C_k)$ (chains of type 3a are not dependent on anything).
The following lemma shows that the only chains of type 1 that cannot be added are either backedges or are contained as D_k in exceptions 18.1-18.3.

Lemma 21. Let S_l be a subdivision constructed under (R_1) and (R_2), let C_j be a chain in S_l and let D_k be a child of C_j that is of type 1 and not in S_l. If D_k is not a backedge, there is a chain of type 3 in the segment containing D_k that starts in $t(D_k) \rightarrow_X s(D_k) \subset C_j$. If D_k is neither a backedge nor contained (as D_k) in the exceptions 18.1 and 18.3, D_k can be added as BG-path.

Proof. Let H be the segment of D_k and assume that D_k is not a backedge. We first show that H contains a chain of type 3 that starts in $t(D_k) \rightarrow_X s(D_k)$. We can assume that D_k is not contained in the exceptions 18.1 and 18.3, as then H would contain such a chain by definition. Let x be the last but one vertex in D_k. Since G is 3-connected, there is a minimal chain C_i entering $T(x)$ such that $s(C_i)$ is an inner vertex of $t(D_k) \rightarrow_X s(D_k)$, as otherwise the inner vertices of D_k would be separated by $\{s(D_k), t(D_k)\}$. By definition of the chain decomposition, C_i must be of type 3a or 3b. Because D_k is not contained in exceptions 18.1 and 18.3 and H cannot contain exception 18.2, Lemma 18 can be applied on C_i, obtaining the last claim.

The next lemma ensures for every subdivision S_l the existence of a chain or caterpillar that obtains a BG-path for S_l, preserving (R_1) and (R_2).

Theorem 22. Let S_l be constructed under (R_1) and (R_2) and let C_i be a chain such that, for every proper ancestor C_j of C_i, every child of C_j and every chain of type 3 starting in $V(C_j)$ is contained in S_l. Let X' be the set of children of C_i that are not contained in S_l and let Y' be the set of chains of type 3 that start in C_i and are not contained in S_l. Then the chains in $X' \cup Y'$ can be successively added as BG-paths (possibly being part of caterpillars) such that (R_1) and (R_2) is preserved and every chain in Y' is followed by its proper ancestors in its segment.

Proof. By assumption, C_i is contained in S_l. Let $D \not\subseteq S_l$ be a child of C_i. If $C_i = C_0$, D must be of type 1. Let $C_i \neq C_0$. Then D cannot be of type 3b, as otherwise it would be contained in S_l due to (R_1) and $C_i \subset S_l$. It is neither of type 3a, since in that case $s(D)$ is contained in a proper ancestor of C_i, implying $D \subset S_l$ by assumption. We conclude that D is of type 1 or 2 and focus on the cases where D cannot be added. Let P be the path on which D depends on. If D is of type 1, P does not contain an inner real vertex, as otherwise D can be added as BG-path due to Lemma 12. With Lemma 21, D must be either a backedge or be contained as the minimal chain in exception 18.1 or 18.3. If D is of type 2a, $s(C_i)$ is real and neither $t(D)$ nor an inner vertex in P can be real, since otherwise D can be added as BG-path, preserving (R_1) and (R_2). If D is of type 2b, D is the minimal chain of a caterpillar L_a with parent C_i. According to Lemma 16, L_a is bad and, thus, corresponds to exception 18.2. The following is a list of the possible cases for which a child D of C_i is not added.

1. D is of type 1 without an inner real vertex in P and either a backedge or the minimal chain in exception 18.1 or 18.3
2. $C_i \neq C_0$ and D is of type 2a without a real vertex in $P \setminus \{s(D)\}$
3. \(C_i \neq C_0\) and \(D\) is of type 2b without an inner vertex in \(P\) (\(D\) is the minimal chain in exception 18.2)

We iteratively add all chains \(D\) in \(X' \cup Y'\) that do not satisfy one of the above three cases 22.1-22.3 for \(D \in X'\) and whose segments do not contain one of the exceptions 18.1-18.3 for \(D \in Y'\) (the latter followed by adding the proper ancestors in the segment of \(D\) according to Lemma 19). Let \(X\) be the set of remaining chains in \(X'\) and let \(Y\) be the set of remaining chains in \(Y'\). If \(X = \emptyset\), \(Y = \emptyset\) holds as well, as otherwise the minimal chain in the segment containing one of the exceptions 18.1-18.3 is a child of \(C_i\), contradicting \(X = \emptyset\). This implies the claim for \(X = \emptyset\).

We prove the theorem by showing that \(X = \emptyset\) must hold. Assume to the contrary that \(X \neq \emptyset\) and let \(S_i\) be the current subdivision (all segments will be dependent on \(S_i\)). Then \(C_i\) must contain a link \(L\) of length at least two, because the dependent path \(P\) in each of the cases 22.1-22.3 is in \(C_i\) and contains a non-real vertex due to the 3-connectivity and simplicity of \(G\). According to Lemma 4, \(L\) contains an inner vertex \(v\) on which a BG-path \(B\) starts (not necessarily being a chain and not necessarily preserving \((R_1)\) or \((R_2)\)). Let \(e\) be the first edge of \(B\). Then \(e\) is not contained in the segment of any \(x \in X\), as otherwise \(B\) would not have property 1.2, because \(v\) is non-real and all start vertices of the chains in the segment of \(x\) that are in \(S_i\) are contained in \(L\). Thus, \(C(e)\) cannot be a child of \(C_i\) and it follows that \(s(C(e)) = v\). In particular, \(C(e)\) is not of type 1.

The segment of \(e\) cannot contain a chain of type 3 that starts in \(C_i\), as it otherwise contains a chain \(x \in X\) of type 1 or 2b due to exceptions 18.1-18.3, contradicting the previous argument. In particular, \(C(e)\) is not of type 3 and the only remaining case is that \(C(e)\) is of type 2.

Let \(C_k\) be the maximal ancestor of \(C(e)\) that is not of type 2. Then \(s(C_k) = v\) holds by construction of the chain decomposition and \(C_k\) must be contained in the segment of \(C(e)\) due to \((R_1)\), \((R_2)\) and \(v\) being non-real. Since the segment of \(e\) cannot contain a chain of type 3 that starts in \(C_i\), \(C_k\) must be of type 1. But then, as \(v\) is an inner vertex of \(L\), \(C_k\) must be a child of \(C_i\), contradicting that \(e\) is not contained in the segment of any \(x \in X\). This is a contradiction to the existence of \(B\) and it follows that \(X = \emptyset\), which implies the claim. \(\Box\)

Corollary 23. Let \(G\) be a 3-connected graph with a chain decomposition \(C = \{C_0, \ldots, C_{m-n+1}\}\). Then \(C_3, \ldots, C_{m-n+1}\) can be added to \(S_3 = C_0 \cup C_1 \cup C_2\) such that every chain satisfies \((R_1)\) and \((R_2)\).

Remark. From Theorem 22, one can possibly derive the characterization of 3-connected graphs of Vo in [7, 8].

4 A Linear-Time Algorithm

With Lemma 8, a chain decomposition \(C_0, \ldots, C_{m-n+1}\) can be computed by essentially one DFS-traversal in \(O(n+m)\). According to Theorem 22, we can find a construction sequence that satisfies \((R_1)\) and \((R_2)\) by the following method: Iteratively for each chain \(C_i\), \(3 \leq i \leq m-n\), we add the children of \(C_i\) and the chains of type 3 that start in \(C_i\) as BG-paths or, if of type 3b, as part of
caterpillars, which can be decomposed into BG-paths. This obtains the desired construction sequence of type 2.(3), which can be transformed easily to the other sequences 2.(2), 2.(4) and 2.(5). However, Theorem 22 does not specify in which order the children of \(C_i \) and the chains of type 3 that start in \(C_i \) have to be added. Moreover, this order depends strongly on the input graph. We show how the computation of this order can be integrated in the chain decomposition while preserving the overall running time of \(O(n + m) \).

We maintain the following information during the chain decomposition: On each vertex \(v \notin \{ s(C_0), t(C_0) \} \), we store a pointer to the unique chain that contains \(v \) as an inner vertex. On each chain \(C_i \), we store pointers to \(s(C_i) \) and \(t(C_i) \), a list \(\text{Children}_{12}(C_i) \) of the children of \(C_i \) that are of type 1 or 2 and the information whether \(C_j \) was already added. For each chain \(C_i \neq C_0 \), we save a list \(\text{Type}_{3}(C_i) \) of pointers to the chains of type 3 that start in \(C_i \setminus \{ s(C_i), t(C_i) \} \). For \(C_0 \), we save the list \(\text{Type}_{3}(C_0) \) of pointers to the chains of type 3 that start in \(C_0 \). For each caterpillar \(L_k \), we maintain the list of chains that are contained in \(L_k \) and store a pointer to this list on \(C_k \) and on the minimal chain in \(L_k \).

Let \(C_i \) be the current chain, i.e., all chains \(C_j \) with \(j < i \) satisfy the preconditions of Theorem 22. Let \(S_t \) be the current subdivision. Then \(\text{Type}_{3}(C_i) \) contains exactly the chains of type 3 that start in \(C_i \) and are not contained in \(S_t \), because the chains \(C_i \neq C_0 \) that start with \(s(C_i) \) or \(t(C_i) \) cannot be contained in \(S_t \). Let \(X \) be the children of \(C_i \) that are not contained in \(S_t \). It follows from the first argument in the proof of Theorem 22 that \(X \subseteq \text{Children}_{12}(C_i) \). In order to ensure \(X = \text{Children}_{12}(C_i) \), all chains in \(\text{Children}_{12}(C_i) \) that are contained in \(S_t \) are deleted in time \(O(|E(C_i)|) \).

We partition \(\text{Type}_{3}(C_i) \) into the classes of chains that are contained in the same segment of \(S_t \). This is done by storing a pointer for each \(C_j \in \text{Type}_{3}(C_i) \) to the minimal chain \(D_j \) of the segment \(H \) that contains \(C_j \). If \(D_k \) is a backedge, \(H \) consists only of one chain \(D_k = C_{j'} \), which can be added immediately due to Lemma 18. For every chain \(C_j \in \text{Type}_{3}(C_i) \) in a segment \(H \) containing at least two chains, we traverse and mark the path \((t(C_j) \rightarrow_T u) \setminus \{ u \} \), where \(u \) is the first ancestor of \(t(C_j) \) in \(T \) that is contained in \(S_t \) or marked. Let \(P \) be the first traversed path in \(H \). Then the last but one vertex of \(P \) must be an inner vertex of the minimal chain \(D_k \) in \(H \) and we use \(D_k \) as marker for \(P \), for all paths that end at \(P \) and for all further paths that are contained in \(H \). This way \(C_k \) can be computed by traversing only the chains that we can add by Theorem 22; the total running time amortizes therefore to \(O(n + m) \).

Let now \(H \) be the segment of a chain \(C_j \in \text{Type}_{3}(C_i) \). If the minimal chain \(D \) in \(H \) is not of type 1 or 2, we can immediately add \(C_j \) along with its ancestors in \(H \) due to Lemma 19. Otherwise, \(D \) is contained in \(\text{Children}_{12}(C_i) \) and the previous computation provides the set \(H \cap \text{Type}_{3}(C_i) \). If \(D \) is of type 2a and \(t(D) \) is real, we add \(D \). Now every remaining chain \(D \) in \(\text{Children}_{12}(C_i) \) is the chain \(D \) of one of the cases 22.1-22.3 with the only exception that there may be inner real vertices on its dependent path \(P \subseteq C_i \). If \(P \) contains an inner real vertex, each chain in \(H \cap \text{Type}_{3}(C_i) \) can be added along with its ancestors in \(H \). If \(P \) does not contain an inner real vertex, no chain in \(H \) can be added under \((R_1) \) and \((R_2) \). It is therefore possible to restrict ourselves to find an ordering on the chains \(\text{Children}_{12}(C_i) \), because the chains in the segments of every such chain can be added immediately afterwards. However, we lack an efficient way of choosing subsequently chains in \(\text{Children}_{12}(C_i) \) that contain an inner real vertex in their dependent path, although Theorem 22 guarantees the...
existence of such chains. We deal with this problem by the following approach.

Let H be the segment that contains a chain $D \in \text{Children}_{12}(C_i)$. We map the dependent path P of D to a set of integer intervals $I(D)$ on the path $t(C_i) \to s(C_i)$, where vertices depict integers. If D is a backedge, $H = \{D\}$ holds and we set $I(D) := \{[s(P), t(P)]\}$ (see Figure 6). Otherwise, D must be in case 22.1 or 22.3 and H contains a chain of type 3 that starts at an inner vertex of P by Lemma 21. Then the precomputed set $H \cap \text{Type}_3(C_i)$ is non-empty and we can efficiently extract the set $\{v_1, \ldots, v_k\}$ of vertices in $H \cap P$, $k \geq 3$, ordered by increasing distance to $r \in V(T)$; note that every vertex in $H \cap P$ occurs only once and that $t(D)$ is also contained in $H \cap P$ if D is of type 2b. We set $I(D) := \{[v_1, v_k], [v_1, v_2], [v_2, v_3], \ldots, [v_{k-1}, v_k]\}$. Additionally, we add for the ordered set $\{t(C_i) = w_1, w_2, \ldots, w_u = s(C_i)\}$ of real vertices in C_i, $u \geq 3$, the set of intervals $I_0 := \{[w_1, w_2], [w_2, w_3], \ldots, [w_{u-2}, w_{u-1}]\}$. Let I be the set of all generated intervals. By construction, $|I|$ is at most $\frac{2}{3} |\text{Children}_{12}(C_i)| + |\text{Type}_3(C_i)| + |\{x| x \text{ is inner real node in } C_i\}|$, where the first two terms are linearly dependent on the length of chains that will be added and the last term sums up to at most n in total.

Let two intervals $[a, b]$ and $[c, d]$ overlap if $a < c < b < d$ or $c < a < d < b$.

We find the next chain having an inner real vertex on its dependent path by finding a next overlapping interval when starting with an interval in I_0. We show that these two methods are equivalent. Clearly, an overlap of two intervals, of which exactly one is contained in the preimage of a chain in S_1, induces an inner real vertex in the other interval. Conversely, let D_2 be a chain in $\text{Children}_{12}(C_i)$ with the dependent path P_2, let H be the segment containing D_2 and let D_1
be the chain that provides the first inner real vertex for \(P_2\) (real vertices can only be provided by the remaining chains in \(\text{Children}_{12}(C_i) \cup \text{Type}_3(C_i)\)). Then \([s(P_1), t(P_1)] \in I(D_1)\) overlaps \([s(P_2), t(P_2)] \in I(D_2)\) or the start vertex \(v\) of a chain in \(H \cap \text{Type}_3 C_i\) is an inner vertex of \([s(P_2), t(P_2)]\). In the latter case, \(v\) is by construction the end point of a chain in \(I(D_1)\). It therefore suffices to find an ordering \(\pi\) of \(I\) that starts with an interval of \(I_0\) such that for every two subsequent intervals \(I_1\) and \(I_2\) in \(\pi\) holds

- \(I_1\) overlaps \(I_2\),
- \(I_2 \subseteq I_0\) or
- \(I_2 \subseteq I(D)\) for a chain \(D\) such that \(I(D)\) contains a smaller interval in the ordering.

For the set \(I\) of intervals, let the overlap graph \(O\) of \(I\) be the graph \((I, E')\) with two intervals being in \(E'\) if and only if they overlap. If we drop the three latter conditions, there exists an sequential algorithm finding \(\pi\) in time \(O(|I|)\) by computing the connected components of \(O\) [3]. Note that the connected components give us also the information whether there exists \(\pi\) in the case of non-3-connected graphs. The Lemmas 4.1 and 4.2 in [3] allow for a simplified variant of this algorithm, which first constructs by two simple sweep lines the forests \(F_1\) and \(F_2\) such that the connected components of \(F_1 \cup F_2\) (having at most \(2|I|\) edges) partitions \(I\) into the same vertices as the connected components of \(O\). We extend this algorithm to deal with our additional three conditions by merging the intervals in \(I_0\) and \(I(D)\) for each \(D \in \text{Children}_{12}(C_i)\) to the same connected component; the number of additional edges in \(F_1 \cup F_2\) is at most \(|I|\) and the asymptotic linear running time is preserved. Using Corollary 23, this gives the following result.

Corollary 24. The construction sequences \(2.(2), 2.(3), 2.(4)\) and \(2.(5)\) of a 3-connected graph can be computed in time \(O(n + m)\).

Remark. The algorithm should easily extend to a certifying 3-connectivity test. The main argument is that, for a graph \(G\) that is not 3-connected, a subdivision must occur for which no BG-path exists by Theorem 2. But every path that contradicts property 1.2 or 1.3 leads to a cut vertex or separation pair. It would be interesting to show how to get implicitly all the separation pairs (and the unique SPQR-tree), as done in [2].

Remark. Note that \(C_i\) can already be processed when all chains with a starting vertex in \(\text{low}(C_i) \to_T r\) for \(r\) being the root of \(T\) have been found. Therefore, the chain decomposition does not have to be finished for testing whether a proper ordering on the chains \(\text{Children}_{12}(C_i) \cup \text{Type}_3(C_i)\) exists and these chains can immediately be added in the affirmative case. In that sense, the 3-connectivity is checked locally for each chain \(C_i\); it might be interesting whether it is faster than the algorithm of Hopcroft and Tarjan [2] in practice.

5 Verifying the Construction Sequence

The certificate of the 3-connectivity of \(G\), e.g., the construction sequences 2.2 and 2.3, can be stored in \(O(n + m)\) space and easily verified in time \(O(n + m)\) as described in [4].
References

