Stochastic dynamics of resistive switching: fluctuations lead to optimal particle number
Radtke, Paul K. ;  Hazel, Andrew L. ;  Straube, Arthur V. ;  Schimansky-Geier, Lutz

HaupttitelStochastic dynamics of resistive switching: fluctuations lead to optimal particle number
AutorRadtke, Paul K.
AutorHazel, Andrew L.
AutorStraube, Arthur V.
AutorSchimansky-Geier, Lutz
Seitenzahl17 Seiten
Freie Schlagwörterresistive switching; fluctuations; master equation; Burgers equation; composite resistive switch; oxygen vacancies; logical state
DDC510 Mathematik
530 Physik
Auch erschienen inNew Journal of Physics. - 19 (2017), 093007
ZusammenfassungResistive switching (RS) is one of the foremost candidates for building novel types of non-volatile random access memories. Any practical implementation of such a memory cell calls for a strong miniaturization, at which point fluctuations start playing a role that cannot be neglected. A detailed understanding of switching mechanisms and reliability is essential. For this reason, we formulate a particle model based on the stochastic motion of oxygen vacancies. It allows us to investigate fluctuations in the resistance states of a switch with two active zones. The vacancies' dynamics are governed by a master equation. Upon the application of a voltage pulse, the vacancies travel collectively through the switch. By deriving a generalized Burgers equation we can interpret this collective motion as nonlinear traveling waves, and numerically verify this result. Further, we define binary logical states by means of the underlying vacancy distributions, and establish a framework of writing and reading such memory element with voltage pulses. Considerations about the discriminability of these operations under fluctuations together with the markedness of the RS effect itself lead to the conclusion, that an intermediate vacancy number is optimal for performance.
PDF-Datei von FUDOCS_document_000000028296
Falls Ihr Browser eine Datei nicht öffnen kann, die Datei zuerst herunterladen und dann öffnen.
Fachbereich/EinrichtungFB Mathematik und Informatik
Dokumententyp/-SammlungenWissenschaftlicher Artikel
RechteCreative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Anmerkungen des AutorsDer Artikel wurde in einer Open-Access-Zeitschrift publiziert.
Erstellt am12.10.2017 - 13:07:55
Letzte Änderung12.10.2017 - 13:09:52
Statische URLhttp://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000028296