Hubbard-to-Heisenberg crossover (and efficient computation) of Drude weights at low temperatures
Karrasch, Christoph

HaupttitelHubbard-to-Heisenberg crossover (and efficient computation) of Drude weights at low temperatures
AutorKarrasch, Christoph
Seitenzahl12 Seiten
Freie Schlagwörterstrongly correlated systems; DMRG; Drude weight; one-dimensional Hubbard model
DDC530 Physik
Auch erschienen inNew Journal of Physics. - 19 (2017), 033027
ZusammenfassungWe illustrate how finite-temperature charge and thermal Drude weights of one-dimensional systems can be obtained from the relaxation of initial states featuring global (left–right) gradients in the chemical potential or temperature. The approach is tested for spinless interacting fermions as well as for the Fermi-Hubbard model, and the behavior in the vicinity of special points (such as half filling or isotropic chains) is discussed.We present technical details on how to implement the calculation in practice using the density matrix renormalization group and show that the non-equilibrium dynamics is often less demanding to simulate numerically and features simpler finite-time transients than the corresponding linear response current correlators; thus, new parameter regimes can become accessible. As an application, we determine the thermal Drude weight of the Hubbard model for temperatures T which are an order of magnitude smaller than those reached in the equilibrium approach. This allows us to demonstrate that at low T and half filling, thermal transport is successively governed by spin excitations and described quantitatively by the Bethe ansatz Drude weight of the Heisenberg chain.
PDF-Datei von FUDOCS_document_000000026968
Falls Ihr Browser eine Datei nicht öffnen kann, die Datei zuerst herunterladen und dann öffnen.
Fachbereich/EinrichtungFB Physik
Arbeitsbereich/InstitutDahlem Center for Complex Quantum Systems
Dokumententyp/-SammlungenWissenschaftlicher Artikel
RechteCreative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Unported License.
Anmerkungen des AutorsGefördert durch die DFG und den Open-Access-Publikationsfonds der Freien Universität Berlin. Neue Version Neue Version
Erstellt am23.05.2017 - 09:57:44
Letzte Änderung23.05.2017 - 11:51:51
Statische URLhttp://edocs.fu-berlin.de/docs/receive/FUDOCS_document_000000026968