6 Literaturverzeichnis

1. Abdulhadi NH. Protection against severe clinical manifestations of Plasmodium falciparum malaria among sickle cell trait subjects is due to modification of the release of cytokines and/or cytoadherence of infected erythrocytes to the host vascular beds. *Med Hypothesis* 60, 912-914 (2003)


10. Allison AC. Protection afforded by sickle cell trait against subtertian malarial infection. *BMJ* 1, 290-295 (1954)


50. Fleming AF et al. Splenomegaly and sickle cell trait. *Lancet* 2 (7567), 574-75 (1968)
60. Friedman MJ. Erythrocytic mechanism of sickle cell resistance to malaria. Proc Natl Acad Sci USA 75, 1994-7 (1978)


77. Hoff C et al. Protection afforded by the sickle cell trait (HbAS): What happens when malarial selection pressures are alleviated? *Hum Biol* 73, 583-586 (2001)


81. Ibhanesebhor SE, Okolo AA. Placental malaria and pregnancy outcome. *Int J Gynecol Obstet* 37, 247-52 (1992)


128. Nagel RL et al. Structural basis of the inhibitory effects of hemoglobin F and hemoglobin A² on the polymerisation of hemoglobin S. *Proc Natl Acad Sci USA* 76, 670-2 (1979)


163. Shear HL et al. Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria. *Blood* 81, 222-226 (1993)


178. Sun PM et al. Sickle cell disease in pregnancy: twenty years of experience at Gracy Memorial Hospital, Atlanta, Georgia. *Am J Obstet Gynecol* 184, 1127-30 (2001)


199. Wright S. Evolution and the Genetics of Populations. 1-4, Chicago, IL; *The University of Chicago Press* (1978)

