Structural and Functional Studies on Bacterial Cold Shock Proteins: Nucleic-Acid Binding, the Architecture of a Domain Swap, and Mechanisms Contributing to their Stabilization

Dissertation

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.)

eingereicht im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

vorgelegt von Dipl. Biochem. Klaas Max aus Wilhelmshaven

September 2006
1. Gutachter: Professor Dr. Udo Heinemann, Freie Universität Berlin
2. Gutachter: Professor Dr. Jochen Balbach, Martin-Luther-Universität Halle-Wittenberg
3. Gutachter: Professor Dr. Ernst-Walter Knapp, Freie Universität Berlin
4. Gutachter: Professor Dr. Wolfram Sänger, Freie Universität Berlin

Disputation am: 12.12.2006
I would like to thank my parents for their support and for their encouragement to find and follow my own course, and all my teachers for their efforts to counsel me on my path.

I would like to thank my doctoral advisor, Prof. Dr. Udo Heinemann, in particular for this interesting subject, his supporting knowledge, a lot of inspiring ideas, his guiding lectures, and his patience.

I would like to thank my collaborators, Prof. Dr. Jochen Balbach, Christian Löw, Prof. Dr. Franz X. Schmidt, Ulrich Weiniger, Michael Wunderlich, and Dr. Markus Zeeb for their kind hospitality and for their willingness to share ideas, materials, and methods.

Dr. Ralf Bienert, Dr. Katja Faelber, and Dr. Yvette Roske have practically guided me through the challenges of protein structure determination using X-ray diffraction techniques. Thank you for many hours we spent on science and more.

Anette Feske and Dr. Yvette Roske have provided and maintained the tools of the trade for protein crystallization. Thank you very much for your support in the lab.

My apprentices Linn Markert and Jacqueline Andratschke I would like to acknowledge for their active and beneficial assistance.

To Prof. Dr. Joachim Behlke, Dr. Margitta Dathe, Dr. Rolf Misselwitz, and Heike Nikolenko I would like to express my gratitude for providing further services and methods.

Kerstin Boehm I would like to thank for critically revising this manuscript.

Finally I would like to acknowledge all members of the Heinemann group, the Protein Structure Factory, and the group of Prof. Dr. Franz X. Schmid and Prof. Dr. Jochen Balbach for the great work environment they provided and for jolly times we spent - inside the lab and beyond.

This work was supported by a Kekulé scholarship from the Fonds der Chemischen Industrie with a participation of the Federal Ministry of Education and Research (BMBF). Further financial support came from the Deutsche Forschungsgemeinschaft, the Helmholtz Gemeinschaft, and the European Union.
Table of Contents

Chapter 1 - Introduction
1.1 Protein structure and function .................................................................7
1.2 Nucleic-acid structure and function .........................................................10
1.3 Cellular adaptation to thermal environments and changing temperatures 13
1.4 Bacterial cold shock proteins - key players in the bacterial cold shock response 18
1.5 Bacterial Cold shock proteins - model systems for protein folding and stability 20
1.6 Goals of this study ..................................................................................21

Chapter 2 - Materials and methods
2.1 Molecular biology methods .................................................................25
2.1.1 Denaturing Schägger gels .................................................................25
2.1.2 Native polyacrylamide gels ...............................................................27
2.1.3 Silver staining of polyacrylamide gels ...............................................28
2.1.4 Generation of \( Bs\)-CspB mutant variants by QuikChange Mutagenesis 29
2.2 Cell biology and protein purification methods ....................................31
2.2.1 Recombinant overexpression of \( Bs\)-CspB and mutant variants in \textit{Escherichia coli} .................................................................31
2.2.2 Bacterial lysis ..................................................................................31
2.2.3 Anion-exchange chromatography .....................................................32
2.2.4 Ammonium-sulfate precipitation and butyl-sepharose hydrophobic-interaction chromatography (HIC) .........................................................33
2.2.5 Gel-filtration chromatography (GFC) ..................................................34
2.2.6 Preparative formation of CSP·oligonucleotide complexes ...............34
2.2.7 Solutions for protein purification .......................................................36
2.3 Spectroscopic methods .......................................................................37
2.3.1 Determination of protein and oligonucleotide concentrations using UV / vis spectroscopy .................................................................37
2.3.2 Determination of melting temperatures from \( Bs\)-CspB and mutant variants using CD spectroscopy .........................................................38
2.3.3 Determination of equilibrium dissociation constants (\( K_D \)) of CSP·oligonucleotide complexes by fluorescence spectroscopy ..................39
2.3.4 Determination of kinetic rate constants for CSP·nucleotide complex formation and dissociation using stopped-flow techniques .................41
2.4 Determination of molecular masses by analytical equilibrium ultracentrifugation ......43
Chapter 3 - Binding of T-rich oligonucleotides to bacterial cold shock proteins

3.1 Results ............................................................................................................................ 63
3.1.1 Crystallization and structure solution of a $B_s$-CspB·dT$_6$ complex ......................... 63
3.1.2 Crystallization and structure solution of a $B_c$-Csp·dT$_6$ complex (1) ..................... 67
3.1.3 The ligand binding sites of $B_s$-CspB and $B_c$-Csp .................................................... 68
3.1.4 Protein-ligand interactions in CSP·dT$_6$ structures .................................................. 69
3.1.5 Contributions of individual sidechains in $B_s$-CspB to ligand binding ..................... 73
3.1.6 Preferential binding of heptanucleotides by CSP ...................................................... 74
3.2 Discussion ...................................................................................................................... 80
3.2.1 Assignment of seven common nucleobase-binding subsites on the CSP surface ........ 81
3.2.2 How CSP may bind to heptanucleotide motifs and functional implications .............. 83
3.2.3 Structural superpositions of CSP structures reveal a preformed nucleotide binding site .................................................................................................................. 86
3.2.4 Ligand binding interfaces from CSP and Y-box proteins are highly conserved ......... 88

Chapter 4 - The architecture of a $B_c$-Csp domain swap

4.1 Results ............................................................................................................................ 93
4.1.1 Crystallization and structure solution of a $B_c$-Csp·dT$_6$ complex (2) ..................... 95
4.1.2 Structural features of the $B_c$-Csp·dT$_6$ domain swap ............................................. 99
4.2 Discussion ...................................................................................................................... 101
4.2.1 Backbone torsions, which mediate domain swapping in $B_c$-Csp, confer a two-state structural variability in closed monomeric CSP .................................................. 101
4.2.2 The domain-swapped architecture of $B_c$-Csp may provide insight in the process of CSP folding and misfolding ................................................................. 103
4.2.3 Ligand binding in the context of domain swapping .................................................... 105
Chapter 5 - Mechanisms contributing to stabilization of cold shock proteins

5.1 Results ......................................................................................................................................107
5.1.1 Crystallization and structure solution of two stabilized Bs-CspB variants ......................107
5.1.2 Global structure of stabilized Bs-CspB variants ...........................................................111
5.1.3 Experimental sampling of coulombic interactions .........................................................111
5.2 Discussion ..............................................................................................................................112
5.2.1 Stabilization in Bs-CspB M1R/E3K/K65I ........................................................................112
5.2.2 Stabilization in Bs-CspB A46K/S48R ............................................................................116
5.2.3 Prevalence of stabilizing mutations from Proside selections in CSP representatives ..........118
5.3 Conclusions and closing remarks .......................................................................................119

Summary .......................................................................................................................................123

Zusammenfassung ........................................................................................................................125

Appendix A - Literature ..............................................................................................................129

Appendix B - Lists and directories

- List of abbreviations .................................................................................................................139
- Directory of figures ...................................................................................................................141
- Directory of tables ....................................................................................................................143
- Directory of equations .............................................................................................................143

Appendix C - Publications ........................................................................................................147