Computer Vision for Autonomous Mobile Robots

Dissertation

zur
Erlangung der Doktorwürde der Naturwissenschaften
im Fachbereich Mathematik und Informatik der
Freien Universität Berlin
Institut für Informatik, Arbeitsgruppe Künstliche Intelligenz
Takustr. 9
14195 Berlin

vorgelegt von
Felix von Hundelshausen
Berlin
2004

Gutachter:
Prof. Dr. Raúl Rojas
Prof. Dr. E. D. Dickmanns
Datum der Disputation: 15.09.2004
Preface

When starting my thesis and my work in the Middle Size league of RoboCup, I always intended to use RoboCup as an example domain for methods that should later work somewhere else. I am glad that I was able to find an algorithm that was very useful for our soccer robots, but which will also be of great use for other systems. The algorithm is able to efficiently track large homogeneous regions in image sequences.

My second aim was to try to use shape information for robot localization and navigation. Here, I developed a method that is specialized to the RoboCup scenario in that it tries to recognize a palette of features in the very specific RoboCup field lines. However, the way in which detection is performed can be transferred to other scenarios.

It has always been difficult to achieve the balance between a reliable, working system in practice and the aim for inventing new methods. Often, simple methods work better in practice. In the end, I am glad that it was not a balancing act but rather a convergence of the two aspects. All the methods that are proposed in the thesis were used in our final six robots participating at the world championships in Lisbon 2004, where we placed fourth.

Acknowledgements

First, I want to thank Prof. Dr. Raúl Rojas, who always had time for me. Over all years he always slept in the same youth hostels with us when we participated in competitions and he never went to sleep before the last of us stopped working. Often it was Mark Simon who worked all the night. Then, I want to thank our team: Ketill Gunnarsson who removed all the compiler warnings from our source code, Fabian Wiesel, Slav Petrov, Fabian Ruff, Oliver Tenchio, Michael Schreiber, Wolf Lindströt, Henning Heinold, Holger Freyther and Achim Liers who designed our electronics. Everything was only possible with their help. Also, I want to thank Detlef Müller and his group at the precision mechanics section of our physics department who accepted some last-minute orders and were able
to produce these parts in a very short time period. Thanks also to Toni Zollikofer from Motorola, whose company provided us with micro-controllers, and to JVC sponsoring us with seven laptops. Then I want to thank Derek Daniel, who corrected my English. Finally, I want to thank Prof. Dr. E. D. Dickmanns. His explanations and advice greatly helped me to understand the control theoretic backgrounds that are important in today computer vision.
Abstract

This thesis has been written in conjunction to our engagement in the Midsize league of RoboCup where autonomous mobile robots play soccer. In particular, it is about the computer vision system of the robots, which supplies the necessary visual information.

The main contribution is a new image processing technique that allows efficient tracking of large regions. The method yields the precise shape of the regions and it is a base for several other methods, which are described in this thesis.

They comprise a new localization method enabling the robots to determine their precise position by perceiving the white field lines. In particular, they are able to perform real-time recognition of a whole palette of features, including the center circle, T-junctions and corners. If a situation occurs where no feature can be recognized, another new method, the "MATRIX-method", is applied. It uses a pre-computed force field to match the perceived field lines to the corresponding lines in a model.

Overall localization is then performed in a three-level fusion process, which precisely takes into account the different time delays in the system. The approach has been demonstrated to work, playing over 10 games at the world-championship 2004 in Lisbon where the system achieved fourth place.

Although the system was conceived for participation in RoboCup, especially the region tracking method will be of great use for many other applications.
Contents

Preface ... 1

1 Introduction ... 5
 1.1 Motivation .. 6
 1.2 The Middle Size League 7
 1.3 The FU-Fighter’s Middle Size Robot 10
 1.4 Localizing the Robot by the Field Lines 13
 1.5 Organization of the Thesis 14

2 Related Work ... 15
 2.1 Navigation Using Laser Range Scanners 16
 2.2 Navigation Using GPS and DGPS 18
 2.3 Navigation Using Radar 20
 2.4 Navigation Using Infrared Proximity Sensors . 21
 2.5 Navigation Using Ultrasonic Sensors 21
 2.6 Navigation by Vision 22
 2.7 Typical System Architectures in RoboCup 29
 2.8 Existing Methods for Field Line Extraction .. 30
 2.8.1 Applying Thresholding and Thinning to Extract the Lines .. 31
 2.8.2 Using the Canny Edge Detector to Extract the Lines 32
 2.8.3 Using the Radial Scan Method to Extract the Lines 37
 2.8.4 Using a Model to Extract the Lines 38
 2.9 Existing Methods for Robot Self-Localization Using the Field lines .. 40
 2.9.1 Monte Carlo Localization 40
 2.9.2 Global Localization by Matching Straight Lines 44
2.9.3 Relative Localization

2.10 Methods for Feature Detection

3 A new Algorithm: Tracking Regions

- **3.1 Extending the Region Growing Paradigm**
 - **3.1.1 Region Growing by Pixel Aggregation**
 - **3.1.2 The Key Observation**
 - **3.1.3 Shrinking Regions**
 - **3.1.4 Alternating Shrinking and Growing**
 - **3.1.5 Applicability**
 - **3.1.6 Running Time**
 - **3.1.7 Controlling the Tracking**
 - **3.1.8 Homogeneity Criterion**
 - **3.1.9 Tracking Several Regions**
- **3.2 Boundary Extraction**
- **3.3 Extracting the Field Lines By Tracking Regions**
- **3.4 Results**

4 A new Localization Method Using Shape Information

- **4.1 Three Layers for Robot Self-Localization**
- **4.2 The Robot’s System State**
- **4.3 Coordinate Systems and Transformations**
- **4.4 Relationship between Wheel Rotations and the Robot’s Movement**
- **4.5 The Dynamic Model**
- **4.6 Using a Kalman Filter to Fuse the Three Layers**
- **4.7 Fusing Delayed Measurements**
 - **4.7.1 Splitting the Kalman Cycle**
 - **4.7.2 Explicit Representation of Time**
- **4.8 Layer 1: Odometric Information**
- **4.9 The Observation Model**
 - **4.9.1 The Omni-Directional Vision System**
 - **4.9.2 The Distance Function**
 - **4.9.3 Predicting the Location of Objects in the Image**
 - **4.9.4 Transformation of Two-Dimensional Points on the Field**
4.9.5 Transformation of Arbitrary 3D Points ... 101
4.10 Transforming the Contours into World Space 102
4.11 Modelling the Field Lines ... 105
4.12 Layer 2: Relative Visual Localization .. 107
 4.12.1 MATRIX: A Force Field Pattern Approach 107
 4.12.2 Adapting the System Dynamics Approach 117
4.13 Layer 3: Feature Recognition .. 130
 4.13.1 Representation of the Line Contours .. 130
 4.13.2 Quality and Quantity of Features .. 132
 4.13.3 Direct Pose Inference by High-Level Features 134
 4.13.4 Smoothing the Lines ... 139
 4.13.5 Splitting the Lines ... 139
 4.13.6 Corner Detection ... 142
 4.13.7 Classification ... 144
 4.13.8 Constructing Arcs and straight lines ... 144
 4.13.9 Grouping Arcs and Detecting the Center Circle 148
 4.13.10 Refining the Initial Solution of the Circle 150
 4.13.11 Determining the Principal Directions 153
 4.13.12 Discarding Unreliable and Grouping Collinear Lines 153
 4.13.13 Detecting the Corners of the Penalty Area 157
 4.13.14 Results of the Feature Detection ... 158
4.14 Results of the Overall Localization .. 162

5 Conclusions and Future Work ... 164
 5.1 Considering the System Dynamics Approach 165
 5.1.1 Automatic Modeling .. 165
 5.1.2 Automatic Learning of Feature Detectors 166
 5.1.3 The Problem of Feature Selection .. 166
 5.2 Top-Down Versus Bottom-Up Methods .. 167
 5.3 Criticizing the Proposed Feature Recognition Approach 168
 5.4 The Problem of Light ... 171

6 Summary of Contributions ... 176
A Pseudo-code of Described Algorithms

- A.1 Thinning .. 178
- A.2 Smoothing the Line Contours 178
- A.3 Calculation of a Curvature Measure 179
- A.4 Extracting Local Maxima in Curvature 180

B Source Code of the Region Tracking Algorithm

- B.1 The Homogeneity Criterion 183
- B.2 The “Don’t touch” Array 183
- B.3 Initializing the Region Tracker 184
- B.4 FU_RegionTracker.h ... 184
- B.5 FU_RegionTracker.cpp ... 186
- B.6 FV2.h ... 192
- B.7 FV2.cpp .. 193
- B.8 FU_Contours.h .. 194
- B.9 FU_Contours.cpp .. 195
- B.10 UTIL_HEAP.h .. 197
- B.11 UTIL_TOPFX.h .. 200

Bibliography

202